271. Permanganate Oxidation of Ambrein and the Absolute Configuration of Dihydro-γ-ionone (Supplement and Rectification)

by Günther Ohloff and Christian Vial
Firmenich SA, Research Laboratories, CH-1211 Geneva 8

(8. XI, 77)

Summary

Compounds 2 to 7 were identified among the products obtained from ambrein (1) by potassium permanganate oxidation; (+)-dihydro- γ -ionone (3) was shown to have the S-configuration.

The application of oxidation methods constituted the basis for elucidating the structure of the triterpene (-)-ambrein (1), one of the main constituents of ambergris [1] [2]. (+)-Ambreinolide (2) [3] [4] and (+)-dihydro- γ -ionone (3) [1] [5] were

isolated on treatment of 1 with permanganate. We have now found the neutral fractions to contain further degradation products formed from the monocyclic moiety of ambrein (1); these are the (+)-diketone 4 [1] [5], the enol 5 of a C(9)

ketoaldehyde, an intramolecular (-)-acetal 6 [6] and the corresponding (-)-lactone 7. The structure of 2, 3 and 6 was proved by comparison with the authentic material, whereas the structure of 4, 5 and 7 was obtained by chemical transformations.

In the presence of ethanolic sodium ethoxide solution (+)-diketone 4 yielded (-)-hydroxyketone 8 of known configuration [7]. The (+)-dihydro- γ -ionone $(3)^1$) formed from (+)-ambrein (1), is related to compounds 4 and 8, and has thus the S-configuration which had erroneously been attributed to its antipode [8].

Experimental Part

General. - If not otherwise stated, the instruments and methods are as previously described [6].

(+)-Ambrein (1). – Two portions, in all 504 g, of crushed ambergris were each extracted with 3000 ml of ether for 2 h at reflux. The soluble portion (417 g, 82.7%), twice washed with 5% NaOH-solution, yielded 387.3 g (76.8%) of dark brown extract which was divided into two portions and chromatographed on 2×2.5 kg of silica gel in hexane/ether 95:5. Fractions 10–32 (one fraction= 1000 ml) yielded 251 g of crude ambrein (1) (49.8%) which was recrystallized (to constant m.p.) from hexane at -20° to give 148 g (29%) pure ambrein (1). M.p. $81-82^{\circ}$ (lit.: $82.5-83.5^{\circ}$ [2]); $[a]_{10}^{20} = +18.42^{\circ}$ (c=1.21, EtOH) (lit.: $+21^{\circ}$ [2]), and $+12.18^{\circ}$ (c=1.28, CHCl₃). – NMR. as described [91]

A solution of 145.5 g of ambrein (1) in 4000 ml of acetone was oxidized with 537 g of KMnO₄ added in portions [2]. A semi-crystalline mass (116.4 g) was obtained which was separated by washing with 5% NaOH into an acid fraction (34 g) and a neutral fraction (94.3 g).

Ambreinolide (2). – After several recrystallizations from hexane at -10° , 40.0 g of lactone 2 were obtained from the neutral fraction. M. p. 134–136° (lit.: 142° [2]); $[a]_0^{20} = +33^\circ (c=1.07, \text{EtOH})$ (lit.: $+34^\circ$ [2]); $+28^\circ (c=1.11, \text{CHCl}_3)$ (lit.: $+30^\circ$ [1]). From the mother liquor (54 g) 27.3 g of a mixture were distilled from the residue (26 g) (b. p. 30–100°/0.1 Torr), chromatography of which on 1 kg of silica gel in hexane/ether 8:2, then 7:3 yielded two fractions. The first fraction (4.5 g) contained 5 (1.2%), 3 (28%), 6 (14.8%) and 7 (56%) in order of retention time on preparative GC. (Carbowax 20 M, 5%, 2.50 m, on Chromosorb W 80–100). The second fraction (19.6 g) was entirely diketone 4.

2-Hydroxymethylene-3,3-dimethylcyclohexanone (5). – IR. (neat): 2980, 2900, 1620, 1590. – NMR. (CDCl₃, 90 MHz): 1.24 (s, 6H, 2CH₃); 1.37–1.95 (m, 4H, –CH₂–CH₂–); 2.39 (m, 2H, –CO–CH₂–); 8.92 (d, J=3, becomes s in D₂O, 1H, =CH–O–); 15.13 (d, J=3, 1H, OH, disappears on addition of D₂O). – MS. m/e: 154 (M $^+$, 16), 139 (100), 111 (16), 97 (13), 83 (14), 69 (7), 55 (20), 41 (16), 27 (7).

Following Näf & Decorzant [13], 10.16 g of CH₃MgI in 40 ml abs. ether were treated at -5° first with powdered CuI and then dropwise with 5.5 g of 3-methylcyclohex-2-en-1-one. After stirring for 1 h 7.4 g of ethyl formate were added. After standing for 1 h, the mixture was worked up as usual to yield 5.1 g product consisting of 80% of 3,3-dimethylcyclohexan-1-one and 20% of ketoaldehyde 5 identical (NMR., MS.) with the degradation product 5 from ambrein.

(+)-Dihydro- γ -ionone (3). $-[a]_{\rm D}^{20}=+15.0^{\circ}$ (neat) (lit.: $+12.8^{\circ}$ [5]); $[a]_{\rm D}^{20}=+17.75^{\circ}$ (c=0.69, CHCl₃). Ketone 3 obtained by the fragmentation of tertiary allylhydroperoxide of ambrein (1) had a rotation of $[a]_{\rm D}=+20.9^{\circ}$ (c=10.4, CHCl₃) [10]. The spectroscopic properties of ketone 3 correspond to those of the known racemic product [11].

Acetal 6. – $[\alpha]_D^{20} = -32^\circ$ (c = 0.57, CHCl₃). The spectra were identical with those of the racemic product [6].

Lactone 7. – M.p. $37-39^{\circ}$; $[a]_{D}^{20} = -76.30^{\circ}$ (c = 1.01, CHCl₃). – IR. (liq.): 2970, 2900, 1780, 1460, 1390, 1280, 1215, 1140, 1080, 1060, 885. – NMR. (CDCl₃, 90 MHz): 0.90 (s, 6 H, 2 CH₃); 1.52 (s,

¹⁾ Ketone 3 isolated from ambergris has a rotation of $a_D = +12.8^{\circ}$ (neat). It was reported that the direction of rotation is reversed in chloroform solution; this, however, is obviously an error [5] (see exper. part).

3H, $-O-CCH_3-O-$). $-^{13}C-NMR$. (CDCl₃): 175.2 (s), 108.1 (s), 81.3 (s), 47.8 (d), 41.1 (t), 34.0 (s), 33.4 (t), 31.8 (t), 31.1 (q), 23.9 (q), 19.7 (q), 19.3 (t), 18.6 (t). -MS. m/e: 224 (M^+ , 0), 209 (1), 191 (1), 181 (71), 165 (37), 147 (12), 139 (33), 122 (55), 111 (61), 95 (20), 81 (19), 69 (35), 55 (27), 43 (100), 27 (12).

A solution of 1.4 g of acetal 6 in 15 ml of acetone and 50 ml of *Jones*'s reagent [12], yielded 1.4 g of a lactone identical (NMR., MS. etc.) with compound 7.

Diketone 4. $- [a]_D^{20} = +6.19^{\circ} (c=1.23, \text{CHCl}_3)$. – IR. (neat): 2980, 2890, 1700, 1360, 1160, 1070, 930. – NMR. (CDCl₃): 0.77 and 1.07 (2s, 6H, 2CH₃), 2.09 (s, 3H, –CO–CH₃). – MS. m/e: 196 (M^+ , 3), 181 (100), 163 (18), 139 (21), 121 (13), 111 (53), 95 (14), 83 (14), 69 (41), 55 (34), 43 (79), 27 (7).

A mixture of 0.5 g of diketone 4 and 40 ml of freshly prepared 0.8% NaOEt for 2 h at RT. yielded, after usual work-up and crystallization from hexane, 228 mg (45.6%) of pure ketoalcohol 8. M.p. 159-161° (lit.: 158-160° [7]); $[a]_D^{20} = -49^\circ$ (c = 1.08, CHCl₃) (lit.: -34° [7]); -52° (c = 1.05, EtOH).

REFERENCES

- [1] L. Ruzicka & F. Lardon, Helv. 29, 912 (1946).
- [2] E. Lederer, F. Marx, D. Mercier & G. Pérot, Helv. 29, 1354 (1946).
- [3] E. Lederer, D. Mercier & G. Pérot, Bull. Soc. chim. France 1947, 345.
- [4] E. Lederer, J. chem. Soc. 1949, 2115.
- [5] L. Ruzicka, C. F. Seidel & M. Pfeiffer, Helv. 31, 827 (1948).
- [6] G. Ohloff, W. Giersch, K. H. Schulte-Elte & Ch. Vial, Helv. 59, 1140 (1976).
- [7] L. Caglioti, H. Naef, D. Arigoni & O. Jeger, Helv. 42, 2557 (1959).
- [8] R. Buchecker, R. Egli, H. Regel-Wild, Ch. Tscharner, C. H. Eugster, G. Uhde & G. Ohloff, Helv. 56, 2548 (1973).
- [9] T. Oritani, K. Yamashita & M. Matsui, Agric, biol, Chemistry 34, 1244 (1970).
- [10] G. Ohloff, K. H. Schulte-Elte & B. L. Müller, Helv. 60, 2763 (1977).
- [11] M. Stoll, Helv. 38, 1587 (1955).
- [12] L. F. Fieser & M. Fieser, 'Reagents for Organic Synthesis', Vol. 1, p. 142, Wiley Interscience, New York - London - Sidney - Toronto 1967.
- [13] F. Näf & R. Decorzant, Helv. 57, 1317 (1974).